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ABSTRACT

In this supplementary material, we present more qualitative
comparison results as complementary results of the main pa-
per. Moreover, we describe some implementation details and
parameter values.

1. QUALITATIVE COMPARISONS WITH SOME
STATE-OF-THE-ART METHODS

We compare the images generated using AttnGAN [1], DM-
GAN [2], ObjGAN [3], CPGAN [4] and our improved ver-
sions of AttnGAN and DMGAN on the MSCOCO14 dataset.
As shown in Fig. 1, our improved methods can generate bet-
ter quality images with realistic details. Moreover, the images
generated by our methods are more consistent with the input
text and more similar with the real images, as shown in Fig. 1.

2. IMPLEMENTATION DETAILS

In Section 2.3.1 of the main paper, we set the number of the
positive and negative samples m = 10. For the positive sam-
ples of the current real image IRi , we first transform IRi to I

′R
i

with a small range of 5% using the tool transforms.ColorJitter
of PyTorch. Then both IRi and I

′R
i are merged with the cur-

rent fake image IFi with five parameters. The parameters are
randomly selected from [0.85,0.98].

For the negative samples of IRi , we first randomly selec-
t five real images from other b − 1 real images, where b is
the batchsize. Then we merge IRi with the random noise
image (described in Section 2.2.1 of the main paper) with
five parameters. The parameters are randomly selected from
[0.5,0.1].

In Section 2.3.2 of the main paper, the number of channels
C = 576. In Equ.13 of the main paper, we set λ3 = 0.5, λ4 =
0.9, λ5 = 0.05 in our experiments. In Equ.14 of the main
paper, we set λ6 = 50.0, λ7 = 0.5 in our experiments. Note
that for the generated 64× 64× 3 and 128× 128× 3 images,
we use the traditional unconditional discriminator as [5].
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Fig. 1. Comparison of the original images and the generated images from AttnGAN [1], DMGAN [2], ObjGAN [3], CPGAN [4]
and our improved versions of AttnGAN and DMGAN on the MSCOCO14 dataset.


