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ABSTRACT

A phrase contains an object-orienting noun and some
attribution-associating words. Therefore, focusing on phrases
could better generate images with the objects and their tightly
relevant characteristics. We propose a Phrase-boost Gener-
ative Adversarial Network (PhraseGAN) with threefold im-
provement for scene level text-to-image generation. First,
we propose a Transformer-based encoder to encode the in-
put words and sentences and encode related words and their
targeting nouns into phrases by text correlation analysis. Sec-
ond, we utilize Graph Convolution Networks to measure fine-
grained text-image similarity, which could gain constraints on
relative positions between different objects. Finally, we de-
sign a phrase-region discriminator to discriminate the qual-
ity of the generated objects and the consistency between the
phrases and their corresponding objects. Experimental results
on the Microsoft COCO dataset demonstrate that PhraseGAN
can generate better images from texts than state-of-the-art
methods.

Index Terms— Text-to-image generation, phrase, trans-
former, GCN

1. INTRODUCTION

Prior text-to-image generation methods based on Generative
Adversarial Network (GAN) can generate high-quality im-
ages with single objects (e.g., bird, flower). However, current
methods can not get satisfactory results for scene-level text-
to-image tasks. It is hard to visually construct scene images
composed of multiple objects, their attributions, and their s-
patial relationships from one text sentence.

In this work, we focus on the phrase to improve GAN-
based scene-level text-to-image generation. The fact behind
such motivation is that the words in one phrase can describe
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both objects and their high-level attributions (e.g., a yel-
low dog, a young girl). To generate high-quality scene im-
ages with multiple foreground objects, we propose a Phrase-
boost GAN named PhraseGAN. Concretely, we first encode
the input text into word and sentence embeddings using a
Transformer-based text encoder (TTE). Then, we analyze the
words correlation using Natural Language Processing (NLP)
approach and obtain the phrase embedding from the word
embedding. Since Graph Convolutional Networks (GCN)
can capture the spatial relationships between objects [1], we
propose a GCN-based text-image similarity model (GTISM)
based on phrase embeddings and GCNs. Our GTISM can
estimate the fine-grained phrase-object similarity and mea-
sure the correctness of the relative distances between objects
utilizing the relative polar distances. Finally, we propose a
phrase-object discriminator (POD) to determine whether the
generated images for objects are realistic and consistent with
the corresponding phrases.

The contributions of this paper can be summarized as fol-
lows:

(1) We propose a Transformer-based Text Encoder for
multiple level embedding, including word embedding, sen-
tence embedding, and phrase embedding;

(2) We propose a new GCN-based text-image similarity
model to measure fine-grained text-image similarity based on
phrase embedding;

(3) We propose a Phrase-object discriminator to improve
the quality and phrase-object consistency of the generated
scene images.

2. RELATED WORKS

Single object text-to-image generation. Reed et al. [2]
first used conditional GAN to generate low resolution
(64×64) images of single objects. Zhang et al. [3] stacked
multiple GANs to generate images. Xu et al. [4] proposed
AttnGAN by adding an attention mechanism to associate
the sub-region images with their relevant words. They al-



so proposed a Deep attentional multimodel similarity model
(DAMSM) to measure text-image similarity. Zhu et al. [5]
proposed dynamic memory and gating mechanism to fuse
the important text and the initially generated images. Qiao
et al. [6] proposed a text-to-image-to-text framework by re-
generating the text descriptions from the generated images to
promote text-image consistency. Hu et al. [7] proposed DC-
GAN to generate diverse single-object images that are seman-
tically consistent with the same input text. Hu et al. [8] pro-
posed SSA-GAN to operate semantic-spatial condition batch
normalization, which deepened the text-image fusion through
the image generation process and guaranteed text-image con-
sistency. Such methods are relatively weak in generating im-
ages for scene-level situations, but they provide basic meth-
ods for text-to-image generation. In our work, we improve the
DAMSM in [4] by proposing a novel GTISM to better mea-
sure the text-image similarities based on novel phrase embed-
dings.

Scene-level text-to-image generation. Scene-level
text-to-image generation needs to construct more things,
including high-level attributions of objects, spatial layout,
etc. Some early methods [9, 10] built scene graphs for the
foreground objects or utilized optimization algorithms to
handle this constrained scene image generation task. Li
et al. [11] took a layout-to-image strategy to synthesize
scene images, but this method have complicated training and
generating process. Liang et al. [12] proposed a CPGAN and
built memory information for every word in the vocabulary.
In addition, they integrated each word with its visual context,
which was composed of relevant object region features. This
technique can effectively improve the quality of generated
images. However, it would lead to mode dropping (decline
in the diversity for each kind of object), as they did not
distinguish the instances. Some GAN-based methods directly
utilize additional scene information from the dataset anno-
tations. For example, Hinz et al. [13] introduced bounding
boxes and labels of the objects from dataset annotations
to generate all the objects in the scene images. Then they
produced scene images by merging the generated objects
from the object pathway and the background from the global
pathway. Our proposed PhraseGAN builds corresponding
relationships between phrases in the input text and instances
in the training and generated images, which will alleviate the
mode dropping of the generated objects.

3. METHOD

The architecture of PhraseGAN is shown in Fig. 1. It first uses
a Transformer-based text encoder (TTE) to encode the input
text into word embedding, sentence embedding, and phrase
embedding. Then the GCN-based text-image similarity mod-
el (GTISM) estimates the text-image similarity and models
the relative positions between YOLOv4 detected objects. Fi-
nally, the proposed Phrase-object discriminator (POD) eval-

Fig. 1. The overview of the proposed PhraseGAN. The con-
tributions are denoted by red boxes.

uates the quality of synthesized scene images and estimates
phrase-object consistency to guide image generation.

3.1. Transformer-based text encoder

3.1.1. Word and sentence embedding

We firstly encode the input sentence into the word embedding
matrix E ∈ Rt×d using the encoder part of Transformer [14],
where t is the number of words in the input sentence, and d is
the feature dimension of each word. Note that we concatenate
the memory features constructed by [12] with the initial word
embeddings before Transformer encoding.

Next, we encode the sentence embedding based on the
obtained word embedding. First, we compute a weight vector
W = [w0, w1, ..., wt−1]T ∈ Rt×1 for the word embedding
matrix E by the Softmax normalization:

wi =
exp (ei)∑t−1

k=0 exp (ek)
, (1)

where ei is the i-th word embedding , and wi indicates the
importance of the i-th word in all words. Then the sentence
embedding S ∈ R1×d is computed by:

S = ET ·W. (2)

The sentence embedding S is further concatenated with a
noise vector z ∈ R1×100 which is sampled from the standard
normal distribution and input into GANs to generate images.

3.1.2. Phrase embedding

To compute the phrase embedding, we conduct text correla-
tion analysis, which consists of adjacency analysis and sim-
ilarity analysis, as shown in Fig. 2. The adjacency analysis
produces an adjacent matrix GA

t ∈ Rn×t (n is the number of
phrases) to determine which words belong to the same phrase.
Specifically, we use the popular Stanford Core NLP [15] tool-
s to obtain the constituency parsing and dependency parsing



Fig. 2. The scheme of phrase embedding based on text corre-
lation analysis and word embedding.

results to decide which words describe the same object. Ac-
cording to the results, we build the adjacent matrix GA

t for all
the words in the input sentence. We call the words describ-
ing the same object semantical correlated and consider them
a noun phrase. We can also get the number of phrases n from
the adjacency analysis.

The similarity analysis measures the correlation degree
between different words with a similarity matrix GS

t ∈ Rt×t.
The GS

t is viewed as a undirected fully connected graph. In-
spired by [16], the normalized edge weight between the i-th
and j-th node is:

gsij =
exp (eTi ej)∑t−1
k=0 exp (eTi ek)

, (3)

where the gsij is the value of the i-th row and j-th column
in GS

t . Finally, we get the phrase embedding P ∈ Rn×d

according to GA
t and GS

t :

P = ‖GA
t G

S
t ‖2E, (4)

where ‖ · ‖2 means L2 normalization and n is the number of
phrases.

3.2. GCN-based text-image similarity model

We propose a GCN-based text-image similarity model
(GTISM) to further compute the fine-grained text-image sim-
ilarity. We also use GCNs to model (1) the semantic relative
position relationships, (2) relative distances, and (3) orienta-
tions between pairs of objects.

Firstly, we extract the semantic relative position relation-
ships from the input text and detect objects in images as
shown in Fig. 3 (a). The text dependency parsing is conducted
using the same Stanford CoreNLP tools [15] as the building
of GA

t in Section 3.1.2. We select relationships about prepo-
sitions and verbs from the output results of the dependency

parser. Then we use the pre-trained YOLOv4 [17] to detec-
t the object regions (indicated by bounding boxes) with the
highest confidence scores in the generated images. We extract
feature F o ∈ Rno×d from each region, where no is the num-
ber of detected object regions and d is the feature dimension.
We also use the non-max suppression technique to further en-
sure the detection precision to remove the redundant detection
results.

Secondly, we build semantic relationship graph Gu and
spatial relationship graph Gv for the phrase embeddings and
the detected object region features, respectively. We visual-
ize the graphs of Gu and Gv in Fig. 3 (b). Both of them
can be represented as symmetric matrix Gu ∈ Rn×n and
Gv ∈ Rno×no , where n is the number of phrases. The Gu

represents the extracted semantic relative positional relation-
ships between different phrases specified in the input text.
TheGu is a directed graph, and the graph nodes are the phrase
embeddings computed in Section 3.1.2. If the positional rela-
tionships of nodes are mentioned in the input sentence, edges
exist between them. The edge weight inGu is the correspond-
ing word embedding of the words that represent relationships.

Meanwhile, we buildGv to represent the relative position-
al relationships between the detected object region. The Gv

is also a directed graph, and the nodes of Gv are the detected
object regions. Similar to Gu, we will build edges between n-
odes when their positional relationships are mentioned in the
input sentence. We add weights to the edges of Gv by using
polar coordinates to model the spatial distances and orien-
tations between pairs of object regions in images like [16].
The spatial distance between two object regions represents
their relative spatial distance, and the orientation represents
the category of the spatial relation (e.g., on, near). The spatial
distance is the Euclidean distance between the center points
of two objects’ bounding boxes.

Thirdly, we use two GCNs to further process the seman-
tic and spatial relationship graphs Gu and Gv , respectively.
We input the Gu into one GCN and Gv into another GCN.
Finally, we will use the output of both GCNs to compute the
phrase-object similarity. The layers in both GCNs will apply
K kernels to learn how to integrate the neighborhood phrase
embeddings or object region features:

p̂i =

K−1∑
k=0

σ(
∑

pj∈Nu
i

Wu
k Gupj+bu), i = 0, 1, ..., (n−1), (5)

f̂i =

K−1∑
k=0

σ(
∑

fo
j ∈Nv

i

W v
kGvf

o
j + bv), i = 0, 1, ..., (no − 1),

(6)
where Nu

i is the neighbour set of the i-th phrase embedding
and Nv

i is the neighbour set of the i-th object feature, σ is
the ReLU activation function, Wu

k , bu, W v
k and bv are the

learning parameters for two GCNs, no is the number of object
regions and n is the number of phrases, and p̂i and f̂i are



Fig. 3. The scheme of the GTISM module.

Fig. 4. The diagram of proposed conditional POD.

the contextual text features and the contextual visual features
output from respective GCN.

Finally, to measure phrase-object similarity, we modify
DAMSM loss [4] to a new LGTISM by replacing the word
embedding and grid region features in DAMSM loss with p̂i
and f̂i, respectively. Apart from the object regions mentioned
in the input sentence, there are also background regions such
as sky, lawn, and indoor scene. We adopt the OAIE [12] to
compute the text-image similarity for the background regions.

3.3. Phrase-object discriminator

For conditional Phrase-object discriminator (POD), we com-
pute the phrase context for each object region by attention
mechanism. The structure of conditional POD is shown in
Fig. 4.

Firstly, we compute the normalized text-image similarity
si,j between the i-th phrase embedding and the j-th object
region feature by:

si,j =
exp(pif

o
j )∑no−1

k=0 exp(pifok )
, (7)

Next, we compute the weight of i-th phrase embedding
for j-th region by:

βi =
exp(si,j)∑n−1

k=0 exp(sk,j)
. (8)

Furthermore, we get the phrase context for the j-th region
by computing the weighted sum of all phrases:

cj =

n−1∑
k=0

βkpk, (9)

Finally, we concatenate 1) the phrase context vector cj , 2)
the object region feature foj and 3) the sentence embedding S
and input the concatenated features into the down-sampling
convolutional network Dobj to judge whether the object is
consistent with the corresponding phrase:

Dobj(x̂, P, S) = [

no−1∑
j=0

cj ,

no−1∑
j=0

foj , S], (10)

where x̂ is the synthesized scene image and [·] means the op-
eration of concatenation.

4. EXPERIMENTS

Dataset. We use Microsoft COCO 2014 [18] (MSCOCO14)
to evaluate the performance of our PhraseGAN and compare
it with other state-of-the-art methods. Most of the images in
the training and testing datasets are scene images and con-
tain 80 different kinds of objects. In addition, each image is
annotated with five human-annotated captions. We randomly
select one caption to generate the corresponding scene image.
The training set of MSCOCO14 has 82783 images, and the
validation set has 40505 images.



Table 1. Comparison with recent text-to-image generation
methods on three metrics, † means the scores are computed
from images generated by the open-sourced models.

Method Venue IS↑ FID↓ R-prec↑
AttnGAN [4] CVPR 2018 25.89 33.10 82.98
DMGAN [5] CVPR 2019 30.49 32.64 88.56

MirrorGAN [6] CVPR 2019 26.47 30.22 74.52
ObjGAN [11] CVPR 2019 27.37 25.85 86.84
OP-GAN [13] ICLR 2019 24.76 33.35 87.90
CPGAN [12] ECCV 2020 52.73 48.87† 89.23†

SSAGAN [8] arXiv 2021 23.20 21.08† 81.92
PhraseGAN (Ours) ICME 2022 36.35 20.27 93.26

Evaluation metrics. We use Inception score [19], Fréchet
inception distance [20] and R-precition [4] to evaluate the
performance of comparative methods. The inception score
(IS) is extensively used to evaluate the quality of generated
images considering both realism and diversity. The Fréchet
inception distance (FID) evaluates the distance between re-
al samples and the generated samples in feature space. Note
that lower FID indicates higher image quality and diversity.
The R-precision measures the semantic consistency between
the input text and the generated image. Our experiments are
conducted on one GPU of GeForce RTX 3090Ti.

4.1. Quantitative and qualitative evaluations

Table 1 illustrates the quantitative comparison results between
the state-of-the-art methods and the proposed PhraseGAN.
The PhraseGAN achieves the best R-precision score and FID,
proving that PhraseGAN can better maintain text-image con-
sistency. Our PhraseGAN gets the second-highest IS, which
is lower than CPGAN. According to the principles of IS and
FID, IS does not penalize the inner-class mode dropping (low
diversity for each kind of object) in the generated images. On
the contrary, FID is more sensitive to this situation. Consid-
ering this characteristic of IS, we believe FID can more com-
prehensively reflect the quality of the generated images.

The qualitative evaluation results are shown in Fig. 5,
which demonstrate the advantages of the phrase boost of
PhraseGAN. For example, in the first column of the resulting
images, our method only generates the objects in the input
text without introducing any other no-existing objects like the
sky. PhraseGAN better understands the phrase meaning of a
grass field, so its region takes up most of the generated image.
We could find similar demonstrations in other column exam-
ples. The phrases boosted by PhraseGAN are marked with
italic and bold format in the input sentences.

4.2. Ablation study

The ablation study is conducted by removing two important
modules from the three proposed modules of PhraseGAN (i.e.

Fig. 5. Qualitative comparison between our method (last
row) and three recent methods, namely ObjGAN [11], S-
SAGAN [8], and CPGAN [12].

Table 2. Ablation study on three evaluation metrics.
Method IS↑ FID↓ R-prec↑
Baseline 33.71 ± 0.29 32.36 88.45

PhraseGAN (TTE) 34.58 ± 0.64 30.22 90.21
PhraseGAN (GTISM) 35.53 ± 0.70 22.64 91.69

PhraseGAN (POD) 35.17 ± 0.57 24.13 92.52
PhraseGAN (All) 36.35 ± 0.69 20.27 93.26

TTE, GTISM, POD) to validate the performance of each pro-
posed module. We remove all three proposed modules from
PhraseGAN as the baseline and conduct quantitative com-
parisons with the three ablation conditions. The quantitative
results are illustrated in Table 2, where the abbreviations in
brackets are retained modules.

The results of PhraseGAN-TTE in Table 2 indicate that
the proposed TTE module can obviously improve the three e-
valuation metrics of the baseline method. This result proves
that the TTE module has better performance than the tradi-
tional LSTM-based text encoder. TTE can better extract the
semantic features in the input text and fully exploit the rel-
evance between different words. Compared with the base-
line, the PhraseGAN-GTISM gets the best IS and FID scores,
demonstrating that the GTISM module can effectively pro-
mote the realism and diversity of the generated images. In the
final ablation study of PhraseGAN-POD, we use the proposed
POD as the discriminator to train the image generator. We can
find that the PhraseGAN-POD achieves the best R-precision
score than PhraseGAN-TTE and PhraseGAN-GTISM, which



demonstrates that the proposed POD can effectively improve
the semantic consistency of the input text and generated im-
ages.

5. CONCLUSION

In this paper, we propose a PhraseGAN model to generate
better scene-level images. We focus on the important role of
the phrase in describing objects, their attributions, and their
spatial relationships. Relevant components have been pro-
posed and applied in the PhraseGAN. The quantitative ex-
perimental results have proven the technical contributions of
PhraseGAN. Especially, some representative cases have illus-
trated the visual advantages brought by the introduction of
Phrase boost.
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